翻訳と辞書
Words near each other
・ Keyhan Hashemnia
・ Keyhaven
・ Key word signing
・ Key Words Reading Scheme
・ Key worker
・ Key works of Carolingian illumination
・ Key worm eel
・ Key Wrap
・ Key Zarrin
・ Key's in the Mailbox
・ Key, Alabama
・ Key, Iran
・ Key, West Virginia
・ Key-agreement protocol
・ Key-based routing
Key-independent optimality
・ Key-recovery attack
・ Key-Soft
・ Key-sung Cho
・ Key-Thomas Märkl
・ Key-value database
・ Key2Audio
・ KEYA
・ Keya Kola, Nowshahr
・ Keya Paha
・ Keya Paha County High School
・ Keya Paha County, Nebraska
・ Keya Paha River
・ Keya Patar Nouko
・ Keyagana language


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Key-independent optimality : ウィキペディア英語版
Key-independent optimality
Key-independent optimality is a property of some binary search tree data structures in computer science
proposed by John Iacono.
Suppose that key-value pairs are stored in a data
structure, and that the keys have no relation to their paired values.
A data structure has
*
*key-independent optimality
*
* if, when randomly assigning the keys, the expected performance of the data structure is within a constant factor of the optimal data structure. Key-independent optimality is related to dynamic optimality.
==Definitions==

There are many binary search tree algorithms that
can look up a sequence of m
keys X = x_1, x_2, \cdots, x_m, where each x_i
is a number between 1 and n.
For each sequence X, let \textit(X)
be the fastest binary search tree algorithm that looks up the elements in X in order.
Let b be one of the
n! possible
permutation of the sequence 1, 2, \cdots, n, chosen at random,
where
b(i) is the ith entry of b.
Let b(X) = b(x_1), b(x_2), \cdots ,b(x_m).
Iacono defined, for a sequence X, that \textit(X) =
E().
A data structure has key-independent optimality
if it can lookup the elements in X in time
O(\textit(X)).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Key-independent optimality」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.